Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping

نویسنده

  • Hsueh-Chia Chang
چکیده

Recently, considerable interest and effort have been devoted to the on-site detection of low-concentration pathogenic bacteria in order to deter infectious diseases and bioterrorism. Conventionally, bacteria detection involves culturing, which is time-consuming and unfeasible under field conditions. Microfluidic devices with integrated electrical detection will enable fast, low-cost, and portable sensing and processing of biological and chemical samples. AC electroosmosis (EO) is well-suited for integration into microsystems due to its low-voltage operation and no-moving-part implementation and microelectrical impedance spectroscopy can be integrated with AC EO for particle manipulation, leading to enhanced sensitivity due to a reduction of the transport time to the detector. Experiments are performed to find optimal conditions for obtaining particle and bacterial assembly lines on electrodes by AC EO and preliminary results show good resolution at a concentration of 10 bacteria/ml, indicating that combining AC EO with impedance measurement can improve the sensitivity of particle electrical detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro- Electrical Impedance Spectroscopy for Particle Detection

Microfludic devices with integrated electrical detection will enable fast, low-cost or portable sensing and processing of biological and chemical samples. As an inherent property of microfabrication, microelectrical impedance spectroscopy detectors can take advantage of AC electrokinetics for particle manipulation, leading to enhanced sensitivity. Preliminary experiments on particle detection w...

متن کامل

Structural, Electrical, and impedance spectroscopy studies of Barium substituted nano calcium ferrites synthesized by solution combustion method.

Barium substituted nanocrystalline ferrites with chemical composition BaxCa1-xFe2O4 (x =0.0 to 0.25) BCAF were prepared by solution combustion method. The phase formation of mixed spinal structured ferrites was confirmed by PXRD analysis. The average crystallite size was calculated using Debye-Scherrer formula and it was found to be in the range of 27-44 nm. Surface morphology was analyzed by S...

متن کامل

A Complete Electrical Equivalent Circuit Model For Biological Cell

A theoretical ac impedance model of biological tissue has been proposed after studying a cellular membrane using X-ray diffraction technique [1], a metal/organic system using ac impedance spectroscopy [2] and reviewing two pieces of literature of similar topics [3,4]. This paper emphasizes ac impedance techniques which can be used to study any heterogeneous materials in order to develop a lumpe...

متن کامل

High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip.

Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) ...

متن کامل

Asymmetrical-fed RHCP Wide-Band Slot Element for X-Band applications

An outstanding square slot element, for x-band wireless applications with asymmetric coplanar waveguide fed (CPW) is proposed. Various shapes of metallic strips are utilized as grounded stubs for providing Right Hand Circular Polarization (RHCP) functionality and wide-band properties. By adjusting the proposed stubs and hook-shaped radiator, length and positions, wider impedance band width is o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005